After a 2 month growing and censusing period, followed by a harvesting, drying, and biomass census I have concluded my 200 pot competition series.
During this period, I had obtained a photometer to measure light levels and did two light census for both the overall pot as well as below canopy. I am hoping that these light measures will provide quantifiable insight on the effect light has on growth. I hypothesize that plants receiving ambient light will yield greater mean biomass per species, while those in shade conditions (to mimic shrub presence) will have a greater mean height due to leggy growth.
I wanted to quantify the growth of my plants through several metrics, and therefore chose to obtain both height and leaf measurements for each species from each pot. In order to acquire these measurements, I implemented a new censusing technique for my second and final census. In this census I counted the number of individuals of each separate species there were per pot. Following this, I took the tallest individual of each species, and recorded its height along with the number of leaves. This way, following the harvest and mechanical oven drying period I would be able to compare the biomass of the plant with its height and leaf count. This would allow me to evaluate plant growth using two separate dimensions; plant height along and number of leaves vs. plant biomass.
After using a mechanical drying oven set to 62 degrees Fahrenheit for 48 hours, I used a precision scale to obtain the biomass of each plant.
The experiment planning, seed counting, pot filling, plant censusing, harvesting, and biomass analysis processing were extensive processes. I am extraordinarily grateful to Dr. Christopher Lortie, Dr.Jacob Lucero, Masters graduate Jenna Braun, research practicum student Anuja, and Economics and Finance student Denis Karasik for their time, efforts, and immense assistance with running this experiment.
Statistical analyses for all of the results are still in work, and I am eager to see the conclusion my experiment comes to